您现在的位置是: 首页 > 志愿填报 志愿填报

演绎推理在高中数学哪个课本_高考演绎推理

tamoadmin 2024-07-11 人已围观

简介1.急问:高考数学试题中各章节知识的比重2.高考数学文科范围3.要高考了,谁能总结一下高中生物实验方法,比如萨顿类比推理法,紧急4.江苏高考数学文科范围2012年高考考试说明(新课标)——数学(理) Ⅳ.考试范围与要求一、必考内容和要求(1)集合1.集合的含义与表示(1) 了解集合的含义,体会元素与集合的属于关系.(2) 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.

1.急问:高考数学试题中各章节知识的比重

2.高考数学文科范围

3.要高考了,谁能总结一下高中生物实验方法,比如萨顿类比推理法,紧急

4.江苏高考数学文科范围

演绎推理在高中数学哪个课本_高考演绎推理

2012年高考考试说明(新课标)——数学(理)

Ⅳ.考试范围与要求

一、必考内容和要求

(1)集合

1.集合的含义与表示

(1) 了解集合的含义,体会元素与集合的属于关系.

(2) 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.

2.集合间的基本关系

(1)理解集合之间包含与相等的含义,能识别给定集合的子集.

(2) 在具体情境中,了解全集与空集的含义.

3.集合的基本运算

(1) 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.

(2) 理解在给定集合中一个子集的补集的含义,会求给定子集的补集.

(3) 能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.

(二)函数概念与基本初等函数Ⅰ

1.函数

(1) 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.

(2) 在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.

(3) 了解简单的分段函数,并能简单应用(函数分段不超过三段).

(4) 理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.

(5) 会运用基本初等函数的图像分析函数的性质.

2.指数函数

(1) 了解指数函数模型的实际背景.

(2) 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.

(3) 理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.

(4) 体会指数函数是一类重要的函数模型.

3.对数函数

(1) 理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.

(2) 理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.

(3) 体会对数函数是一类重要的函数模型;

 (4) 了解指数函数 与对数函数 互为反函数.

4.幂函数

(1)了解幂函数的概念.

(2)结合函数

的图像,了解它们的变化情况.

5.函数与方程

结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.

6.函数模型及其应用

(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.

(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.

(三)立体几何初步

1.空间几何体

(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.

(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.

(3)会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.

(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).

2.点、直线、平面之间的位置关系

(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.

◆公理2:过不在同一条直线上的三点,有且只有一个平面.

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

◆公理4:平行于同一条直线的两条直线互相平行.

◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.

(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.

理解以下判定定理.

◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.

◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.

◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.

◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.

理解以下性质定理,并能够证明.

◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.

◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.

◆垂直于同一个平面的两条直线平行.

◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.

(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.

(四)平面解析几何初步

1.直线与方程

(1)在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素.

(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.

(3)能根据两条直线的斜率判定这两条直线平行或垂直.

(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.

(5)能用解方程组的方法求两条相交直线的交点坐标.

(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.

2.圆与方程

(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.

(2)能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.

(3)能用直线和圆的方程解决一些简单的问题.

(4)初步了解用代数方法处理几何问题的思想.

3.空间直角坐标系

(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.

(2)会简单应用空间两点间的距离公式.

(五)算法初步

1.算法的含义、程序框图

(1)了解算法的含义,了解算法的思想.

(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.

2.基本算法语句

了解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义.

(六)统计

1.随机抽样

(1)理解随机抽样的必要性和重要性.

(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.

2.用样本估计总体

(1)了解分布的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.

(2)理解样本数据标准差的意义和作用,会计算数据标准差(不要求记忆公式).

(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.

(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.

(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.

3.变量的相关性

(1)会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.

(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).

(七)概率

1.事件与概率

(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.

(2)了解两个互斥事件的概率加法公式.

2.古典概型

(1)理解古典概型及其概率计算公式.

(2)会计算一些随机事件所含的基本事件数及事件发生的概率.

3.随机数与几何概型

(1)了解随机数的意义,能运用模拟方法估计概率.

(2)了解几何概型的意义.

(八)基本初等函数Ⅱ(三角函数)

1.任意角的概念、弧度制

(1)了解任意角的概念和弧度制的概念.

(2)能进行弧度与角度的互化.

2.三角函数

(1)理解任意角三角函数(正弦、余弦、正切)的定义.

(2)能利用单位圆中的三角函数线推导出

α ,π± α 的正弦、余弦、正切的诱导公式,能画出

的图像,了解三角函数的周期性.

(3)理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大值和最小值以及与 x 轴交点等).理解正切函数在区间

)内的单调性.

(4)理解同角三角函数的基本关系式:

(5)了解函数

的物理意义;能画出

的图像,了解参数

对函数图像变化的影响.

(6)体会三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.

(九)平面向量

1.平面向量的实际背景及基本概念

(1)了解向量的实际背景.

(2)理解平面向量的概念和两个向量相等的含义.

(3)理解向量的几何表示.

2.向量的线性运算

(1)掌握向量加法、减法的运算,并理解其几何意义.

(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.

(3)了解向量线性运算的性质及其几何意义.

3.平面向量的基本定理及坐标表示

(1)了解平面向量的基本定理及其意义.

(2)掌握平面向量的正交分解及其坐标表示.

(3)会用坐标表示平面向量的加法、减法与数乘运算.

(4)理解用坐标表示的平面向量共线的条件.

4.平面向量的数量积

(1) 理解平面向量数量积的含义及其物理意义.

(2) 了解平面向量的数量积与向量投影的关系.

(3) 掌握数量积的坐标表达式,会进行平面向量数量积的运算.

(4) 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.

5.向量的应用

(1)会用向量方法解决某些简单的平面几何问题.

(2)会用向量方法解决简单的力学问题与其他一些实际问题.

(十)三角恒等变换

1.两角和与差的三角函数公式

(1) 会用向量的数量积推导出两角差的余弦公式.

(2) 会用两角差的余弦公式推导出两角差的正弦、正切公式.

(3) 会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.

2.简单的三角恒等变换

能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).

(十一)解三角形

1.正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

2.应用

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

(十二)数列

1.数列的概念和简单表示法

(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).

(2)了解数列是自变量为正整数的一类特殊函数.

2.等差数列、等比数列

(1) 理解等差数列、等比数列的概念.

(2) 掌握等差数列、等比数列的通项公式与前n项和公式.

(3) 能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.

(4) 了解等差数列与一次函数、等比数列与指数函数的关系.

(十三)不等式

1.不等关系

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.

2.一元二次不等式

(1) 会从实际情境中抽象出一元二次不等式模型.

(2) 通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.

(3) 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

3.二元一次不等式组与简单线性规划问题

(1) 会从实际情境中抽象出二元一次不等式组.

(2) 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.

(3) 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

4.基本不等式:

(1) 了解基本不等式的证明过程.

(2) 会用基本不等式解决简单的最大(小)值问题.

(十四)常用逻辑用语

(1) 理解命题的概念.

(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.

(3) 理解必要条件、充分条件与充要条件的意义.

(4)了解逻辑联结词“或”、“且”、“非”的含义.

(5) 理解全称量词与存在量词的意义.

(6) 能正确地对含有一个量词的命题进行否定.

(十五)圆锥曲线与方程

(1) 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.

(2) 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质(范围、对称性、定点、离心率).

(3) 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、定点、离心率、渐近线).

(4) 了解曲线与方程的对应关系

(5)理解数形结合的思想

(6)了解圆锥曲线的简单应用.

(十六)空间向量与立体几何

(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.

(2) 掌握空间向量的线性运算及其坐标表示.

(3) 掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线与垂直.

(4) 解直线的方向向量与平面的法向量.

(5) 能用向量语言表述线线、线面、面面的平行和垂直关系.

(6)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).

(7) 能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用.

(十七)导数及其应用

(1)了解导数概念的实际背景.

(2) 通过函数图像直观理解导数的几何意义.

(3) 根据导数的定义求函数

(c为常数)的导数.

(4) 能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.

常见基本初等函数的导数公式和常用导数运算公式:

(C为常数);

n∈N+

(a>0,且a≠1);

(a>0,且a≠1).

常用的导数运算法则:

法则1

.

法则2

.

法则3

(5)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).

(6) 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).

(7)会用导数解决某些实际问题..

(8)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.

(9) 了解微积分基本定理的含义.

(十八)推理与证明

(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.

(2) 了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运“三段论”进行一些简单的演绎推理.

(3) 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.

(4) 了解反证法的思考过程和特点.

(5)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.

(十九)数系的扩充与复数的引入

(1)理解复数的基本概念,理解复数相等的充要条件.

(2)了解复数的代数表示法及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对应的复数用代数形式表示.

(3)能进行复数代数形式的四则运算,了解两个具体复数相加、相减的几何意义.

(二十)计数原理

(1)理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.

(2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.

(3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.

(4)会用二项式定理解决与二项展开式有关的简单问题.

(二十一)概率与统计

(1) 理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列.

(2)了解超几何分布及其导出过程,并能进行简单的应用.

(3) 了解条件概率的概念,了解两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.

(4) 理解取有限个值的离散型随机变量均值、方差的概念,会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题.

(5) 借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.

(6)了解回归的基本思想、方法及其简单应用.

(7)了解独立性检验的思想、方法及其初步应用.

二、选考内容与要求

(一)几何证明选讲

(1)理解相似三角形的定义与性质,了解平行截割定理.

(2)会证明和应用以下定理:①直角三角形射影定理;②圆周角定理;③圆的切线判定定理与性质定理;④相交弦定理;⑤圆内接四边形的性质定理与判定定理;⑥切割线定理.

(二)坐标系与参数方程

(1)了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.

(2) 了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.

(3) 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.

(4)了解参数方程,了解参数的意义.

(5) 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.

(三)不等式选讲

(1)理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:

∣a+b∣≤∣a∣+∣b∣;

∣a-b∣≤∣a-c∣+∣c-b∣;

(2)会利用绝对值的几何意义求解以下类型的不等式:

 ∣ax+b∣≤c;

 ∣ax+b∣≥c;

 ∣x-c+∣x-b∣≥a

(3)通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法

魔数师唐 希望对你有用!!!

急问:高考数学试题中各章节知识的比重

新高考命题特点及趋势如下:

一、政治、科技、时政和文化紧密围绕热点。

考生需要关注国家重点支持和发展的科技领域。包括:航空航天工程、电子信息、5G 通信、量子计算、新能源、纳米芯片、生物与新医学、自动化、碳中和等。尤其是数学、物理、化学和生物四门科目更将围绕重大的科技前沿和科技成就设题。

考生需要关注时政热点与重大历史事件。包括:共同富裕、十四五规划、中国抗疫经验、世界格局、航天技术、二十大报告等重大问题。尤其是语文、历史、地理和政治四门科目更可能以重大问题为材料素材或题设情境。

考生需要关注中华文明与文化。在近几年的高考命题中,各个学科的命题情境都在不断凸显对中华传统优秀文化的学习和传承,尤其是文史类科目将会持续紧密围绕文化自信进行命题。

二、核心素养和关键能力考查进一步加强。

未来高考试卷将会延续 2023年的高考命题思路,加强对核心素养、关键能力和必备知识三位一体的整体性考查,并从多角度考查考生的逻辑思维、形象思维、抽象思维、总结归纳、演绎推理批判性思维、辩证思维等能力,具体总结为以下几个方面:

(1)高水平阅读与表达。

未来的高考题中,材料信息量、图标内容、数据体量会不断增加,应用类场景会大量出现,考查考生材料阅读理解、知识获取、信息整理与加工、写作表达等能力。

(2)理证分析。

考查学生以已有的信息和条件为基础,通过逻辑分析、思维建模、推理证明得出正确结论的能力,进一步考查学生在面对各种复杂问题时独立思考、敢于质疑,运用已有知识解决问题的能力。

(3)实证分析。

要求学生能够根据对问题情境的分析,运用实证数据分析问题和本质的内在联系,进一步考查学生能够运用综合能力,对各类情境中的问题提出合理的解决方案,并实施调研、探究或实验活动的能力。

(4)创新性思维能力。

考查学生运用开放性和创造性的思维方式应对问题,并提出新观点、新方法、新设想,甚至多种合理的解题方案的能力。

(5)跨学科知识。

要求学生在应对跨学科的问题时,能够合理运用各种相关的知识,综合、准确地表达观点。理科试卷还会要求展示正确的解题过程和中间答案,实验题还需写出正确的实验思路和报告等。

三、新高考题目情境设计越发新颖。

结合近几年高考试题中情境题的设计规律,未来高考试题将进一步加大情境设题的创新性、开放性和综合性。具体而言,新高考试卷会呈现以下特征:

(1)题目涉及的领域增多,包括生产生活、科学与科技、时政热点、社会民生等各个领域,题目的考查方向更注重理论联系实际,题目的文本体量和范围进一步增大,与文本相关联的信息更加开放和多元化。

(2)科学与科技领域的题目更加靠近前沿,信息维度更加广阔,题干中除了直接提供的信息和知识外,还隐藏更多间接信息、数据和结论。题目可以包含近些年主要的科研成果和应用,要求考生不只是熟悉书本上的知识,还需要通过提取关键信息和数据,运用综合知识进行分析和推理。

(3)图文信息和数据表格的考查难度增加,各学科的知识与能力并行考查。图文和数据是各个学科试卷中的重要组成部分,未来考试中图文信息的增加意味着信息量的广度和深度同时增加,同时更多信息会被隐藏。题目还会呈现跨学科的图书和数据展示,要求考生理解题干情境的设置,快速透过现象看到本质,然后通过建构合理的思路和模型展示解答过程。

总的来说,各学科考查的重点是要求学生在设计新颖的情境下,运用关键能力和学科素养经由思维活动而不是回忆学科知识去解决专业的学科问题,这是未来新高考命题的发展趋势。

高考数学文科范围

一、 数学命题原则

1.普通高等学校招生数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,测试中学数学基础知识、基本技能、基本思想和方法,考查思维能力、运算能力、空间想象能力以及运用所学数学知识和方法分析、解决实际问题的能力.数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,在强调综合性的同时,重视试题的层次性,合理调控综合程度,坚持多角度、多层次的考查.

2.数学学科的特点是高考数学命题的基础,在命题过程中命题人会充分考虑这些特点,发挥其内部的选拔机制,实现高考的选拔功能

数学是研究现实世界空间形式和数量关系的科学,高度的抽象性结论的确定性和应用的广泛性是数学的特点.数学的研究对象和特点体现在数学考试中就形成数学考试的学科特点.

(1)概念性强.数学是由概念、命题组成的逻辑系统,而概念是基础,是使整个体系联结成一体的结点.数学中每一个术语、符号和习惯用语都有着明确具体的内涵.这个特点反映到考试中就要求考生在解题时首先要透彻理解概念的含义,弄清不同概念之间的区别和联系,切忌将数学语言和日常用语混为一谈,更不应出现“望文生义”之类的错误.

例1、已知{a,b,c} {-1,0,1,2,4,8},以a,b,c为系数,组成二次函数y=ax2+bx+c,开口向上且不过原点的不同的抛物线有__________条。

在解此题中,学生容易犯两种概念性的错误,一个是将{a,b,c} {-1,0,1,2,4,8}与a,b,c∈{-1,0,1,2,4,8},混淆前者是集合,其元素具有互异性,而后者可以相同,二是二次函数y=x2+4x+2与y=2x2+8x+4是两个不同的函数,而方程x2+4x+2=0 与2x2+8x+4=0却有相同的解。

因此,我们在高三后期复习中,要注意发现学生在概念的理解上还有哪些错误和不严谨的地方;选题中,不要选语义不清,容易引起歧异的题;而在复习教学中,.同时应注意各种符号和图形的运用,减少生活语言对数学语言的干扰,影响学生的正常复习和思维方向。

(2)充满思辨性.这个特点源于数学的抽象性、系统性和逻辑性.数学知识不是经过观察实验总结出来的,而是经演绎推理而形成的逻辑体系,逻辑推理是其基本的研究方法;数学不是知识性的学科,而是思维型的学科.

例2、已知椭圆的离心率为0.5,两准线的距离为8,椭圆焦点为F1,F2,点P在此椭圆上,∠F1PF2=300,则ΔF1PF2的面积为___________。

在解此题中,学生会用椭圆的焦点三角形的面积公式b2 tan 快速地解答出,但本题可以有多种变化,如:椭圆改成双曲线,或改焦点为长轴顶点等(当然数据也要做相应调整),学生就不一定做得来了。

数学试题靠机械记忆,只凭直觉和印象就可以作答的很少.为了正确解答,总要求考生具备一定的观察、分析和推断能力.因此,在高三后期复习中,不要给学生补充太多的中间性的公式和结论,而应教会学生理解此中间性的公式和结论的本质和推导。

(3)量化突出.数量关系是数学领域研究的一个重要方面,也是数学测试不可缺少的内容,因此数学试题中定量性占有较大比重.试题中的定量要求一般不是简单、机械的计算,而是把概念、法则、性质寓于计算之中,在运算过程中考查考生对算理、运算法则的理解程度、灵活运用的能力及准确严谨的科学态度.由此可见,突出量化是数学试题的一个明显特点,并有重要的意义.

(4)解法多样.一般数学试题的结果虽确定唯一,但解法却多种多样,这有利于考生发挥各自的特点,灵活解答,真正显现其水平.命题时应考虑各种等价解法的考查重点和难度大致相同,解答到同样深度给同样的分值,不同解法的考查要求符合命题的初衷,实现考查目的.

例3、(04年)不等式 | x+2| 》| x | 的解集是___________。

在解此题中,学生可以用平方法,零点分段法,函数图象(数形结合)、数轴等多种方法,每一种方法都能体现相应的数学思想。我们在高三后期复习中,选讲的题尽量能象本题一样能体现出解法的多样性。

二、 数学命题的结构、题型、难度

1.全面考查考生素质,在选拔中应强调,只有各方面的素质都比较好的学生才是高校所需的学生.因此,试卷应有合理的知识结构和能力层次结构.知识结构是指试卷中包含学科各部分知识的比例.在编制双向细目表时,应根据各部分内容的教学时数和普通高考对考生知识结构的要求,确定试卷中各部分知识内容的分数比例,全面考查概念、定理、公式和法则等各项基础知识.试卷能力层次结构反映试卷对能力要求的层次和比例.试卷对能力要求的层次和比例,反映着考查的性质和要求.同样的学科知识内容,不同性质的考试对能力要求的层次和比例是不同的.在高考中,应既考查数学能力,又考查一般认识能力,如观察力、注意力、记忆力、想象力和思维能力;既考查较高层次的能力,又考查较低层次的能力.数学高考中,考试目标包括基本方法的内容?因此还应注意结合各项知识考查数学方法.将知识内容、数学方法和能力层次三者有机结合,并融入具体试题,才能有效地全面考查考生素质.

2.体现要求层次,控制试卷难度

高考的目的是为高校选拔新生,但其要求仍要以高中教学内容为基础.数学高考不同于数学竞赛.高考兼有速度要求,试卷难度适中,一般考生都能得到基本分;而竞赛是典型的难度考试,试卷难度很大,只有极少数考生能取得较好成绩.

例4、若椭圆 内有一点P(1,-1),F为椭圆的右焦点,椭圆上有一点M,使 |MP| +2|MF| 最小,则点M的坐标为____________

这是一道常见于各种参考书上的题,许多教师讲过,学生也做过,但它是由97年全国高中数学联赛的一道20分的大题改过来的,在高三后期就没有必要再讲,再做这种技巧强,解法单一的题了,从而为学生节约宝贵的时间和精力。

3 .根据教育测量学原理,大规模考试的整卷难度在0.5左右最为理想,可以使考生成绩呈正态分布,标准差比较大,各分数段考生人数分布比较合理,对考生总体的区分能力最强.但考虑到中学的评价方法和评价机制尚不健全,高考事实上对高中教学有着较强的评价导向作用,为稳定高中教学秩序,照顾全省总体的实际教学水平,整卷难度控制在0.55左右比较合适.估计应比03年容易,比05年难一点,大体与04年难度相当.

试卷中各种难度的档次一般这样界定,难度在0.7以上为易题,0.4—0.7为中档题,0.4以下为难题.从过去的全国高考来看,试卷中易、中、难三种试题的比例为3:5:2比较合适,各种题型中易、中、难题目的比例分别为选择题3:2:1,填空题2:1:1,而解答题一般不安排易题,中档题和难题的比例为1:1.其次各个试题的难度,一般在0.2—0.8之间,并在每种题型中编拟一些有一定难度的试题,从而实现选拔的目的.如果一道考题过难,就达不到选拔的目的。

因此,在高三后期复习中,我们的讲练都应以中档题中的较为有代表性的题为主,重点强调基本知识、基本思想和方法,强调熟悉和过手,而不是加难和拔高。

4.高考要以考查能力和素质为主.为真正考查出学生的潜能和素质,必须给学生更多的思考空间和时间,控制运算量,增加考生思考时间是高考改革的方向.因此,教师在选题、编题、教学、制卷中,应尽量避免繁、难的运算,控制计算量,排除由于计算过多过繁造成耗时较多,或由计算错误而造成学生分析障碍,以便学生集中思考问题.

5.由于文、理科所学习的内容上有许多不同的地方,并且文、理科学生的数学思维能力也有很大的差距,因此,文理科试卷在难度上是有差别的,试卷中交叉共用的部分多数属于中等难度的试题.文科考生能力的差距很大,水平差异更为明显,高考试题难度的起点较理科有所降低,而试题难度的终点应与理科相同.所以对于文理跨科的教师要注意在教学的各个环节中,一定要针对学生的不同情况,采用有一定差异的例题,练习题和考题,即使同一题,采取讲解方法,也会有所差异。

第三节 各章节内容在高考中考题特点

数学科有近200个知识点,而现在离高考仅两个月的时间,再分章节复习是不可能,同时高考命题强调知识之间的交叉、渗透和综合,分章节复习也不利于学生综合能力的提高,因此,高三后期复习应强化主干知识,因为主干知识是支撑学科知识体系的主要内容,在高考中,保持较高的比例,并达到必要的深度,构成数学试题的主体.我们应从高中数学的整体上设计教学,教学中应淡化特殊技巧,强调通法通解,强调数学思想和方法,同时又根据各章节内容在高中数学中的作用和特点,及其相互之间的关联,采取一些有所侧重的教学。

一、 函数、三角函数、导数

函数和导数是高中教学内容的知识主干,是高考重中之重.函数内容有三块:一、函数的概念,函数的图像与性质,指数函数和对数函数,反函数和函数的关系、函数的单调性;二、同角、诱导、和差、倍角公式,三角函数,函数的奇偶性和周期性;三、函数极限、函数连续性、函数的导数,导数的应用,使用导数的方法研究函数的单调性、极大(小)值和最大(小)值。

高考对函数内容的考查是考查能力的重要素材,一般考查能力的试题都是以函数为基础编制的,在旧课程卷中多与不等式、数列等内容相综合,在新课程卷中函数问题更多是与导数相结合,发挥导数的工具作用,应用导数研究函数的性质,应用函数的单调性证明不等式,体现出新的综合热点。随着函数与导数内容的结合,一般的问题都是先从求导开始,而求导又有规范的方法,利用导数判断函数的单调性,有规定的尺度,具有较强的可操作性,难度适中.

函数和导数的内容在高考试卷中所占的比例较大,每年都有题目考查.考查时有一定的综合性,并与思想方法紧密结合,对函数与方程的思想、数形结合的思想、分类讨论的思想、有限与无限的思想等都进行了深入的考查.这种综合地统揽各种知识、综合地应用各种方法和能力,在函数的考查中得到了充分的体现.

函数和导数的解答题在文、理两卷中往往分别命制,这不仅是由教学内容要求的差异所决定的,也与文、理科考生的思维水平差异有关.文科卷中函数与导数的解答题,其解析式只能选用多项式函数;而理科卷则可在指数函数、对数函数以及三角函数中选取.在选择题和填空题中更多地涉及函数图像、反函数、函数的奇偶性、函数的极限、函数的连续性和导数的几何意义等重点内容.在高考时往往不是简单地考查公式的应用,而是与数学思想方法相结合,突出考查函数与方程的思想、有限与无限的思想.

在新教材中,三角函数公式要求弱化,并对公式作了较大的删减,同角公式由8个删为3个;删去了余切的诱导公式;删去了半角公式、积化和差与和差化积公式;删去了反三角函数与简单三角方程的绝大部分内容,只保留了反正弦、反余弦、反正切的意义与符号表示,而简单三角方程的内容只要求由已知三角函数值求角.因此,新课程卷对三角函数的考查内容也随之进行了调整.由于新教材中删去了复数的三角式,删去了参数方程的部分内容,因此三角函数的工具性作用有所减弱,而新增内容如平面向量、极限与导数,它们在新教材中的工具性作用替代了三角函数在原教材中的工具性作用.

在高考中把三角函数作为函数的一种,突出考查它的图像与性质,尤其是形如y=Asin(ωx+φ)的函数图像与性质,对三角公式和三角变形的考查或与三角函数的图像与性质相结合,或直接化简求值.在化简求值的问题中,不仅考查考生对相关变换公式掌握的熟练程度,更重要的是以三角变形公式为素材,重点考查相关的数学思想和方法,主要是方程的思想和换元法.

由于删去了反三角函数与三角方程的大部分内容,对反三角函数求会用反三角函数符号表示相关的角,会由三角函数值求角就行.

二、数列

数列的内容很少,但在高考中,数列内容却占有重要的地位。主要内容有一般数列的概念与性质,等差数列与等比数列,及其通项公式与前n项和公式.高考历来把数列当作重要的内容来考查,对这部分的要求达到相应的深度,题目有适当的难度和一定的综合程度.数列问题在考查演绎推理能力中发挥着越来越重要的作用.高考试卷的数列试题中,有的是从等差数列或等比数列人手构造新的数列,有的是从比较抽象的数列人手,给定数列的一些性质,要求考生进行严格的逻辑推证,找到数列的通项公式,或证明数列的其他一些性质.在这里也有一些等差数列或等比数列的公式可以应用,但更多的是应用数列的一般的性质,如an=Sn-Sn-1等.这些试题对恒等证明能力提出了很高的要求,要求考生首先明确变形目标,然后根据目标进行恒等变形.在变形过程中,不同的变形方法也可能简化原来的式子,也可能使其更加复杂,所以还存在着变形路径的选择问题.

高考对数列的考查把重点放在对数学思想方法的考查,放在对思维能力以及创新意识和实践能力的考查上.使用选择题、填空题形式考查的数列试题,往往突出考查函数与方程的思想、数形结合的思想、特殊与一般的思想、有限与无限的思想等数学思想方法,除了考查教材中学习的等差数列与等比数列外,也考查一般数列.高考数列解答题,其内容往往是一般数列的内容,其方法是研究数列通项及前n项和的一般方法,并且往往不单一考查数列而是与其他内容相综合,过去,常将数列与函数,数列与不等式综合,而现在有数列与导数、解析几何相结合出题的新特点.

例如:下面的题就是一道数列与导数的结合

文、理科高考数列题一般命制不同的试题,理科试题侧重于理性思维,命题设计时以一般数列为主,以抽象思维和逻辑思维为主;而文科试卷则侧重于基础知识和基本方法的考查,命题设计时以等差、等比数列为主,以具体思维、演绎思维为主.

三、不等式

不等式是高中数学的重要内容之一,学生在高中阶段要学习不等式的性质、简单不等式的解法、不等式的证明以及不等式的应用.在新教材中,不等式的内容与原教材相比,作了一些调整.在解不等式部分,新大纲和新教材中删去了无理不等式、指数不等式和对数不等式的解法,只保留了二次不等式、分式不等式以及含有绝对值的简单不等式的解法;平均值定理由原来的三个正数降低为两个正数的要求.由于这些变化,高考命题也相应作出了调整.

在高考试题中,对不等式内容的考查包括不等式的性质,解简单的不等式以及平均值定理的应用等.对不等式性质的考查突出体现对基础知识的考查,其中也能体现出对相应思想方法的考查.以选择题、填空题形式考查解不等式,不仅仅考查解不等式时经常使用的同解变形的代数方法,更突出体现数形结合的思想以及特殊化的思想.对使用平均值定理求最值的考查,由于教学要求的变化,考查要求有所降低,突出常规方法,淡化特殊技巧。在解答题中,一般是解不等式或证明不等式.不等式的证明与应用常与其他知识内容相综合,尤其是理科试卷,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维的考查.解不等式的应用往往以求取值范围的设问方式呈现,通过相关知识,转化为解不等式或不等式组的问题,并且往往含有参数,也有一定的综合性和难度.总之,以解答题的形式对不等式内容的考查,往往不是单一考查,而是与其他知识内容相综合,有较多的方法和较高的能力要求.

例如:下题就是一道不等式和解析几何、数列结合的题

四、立体几何

高考试卷中对空间想象能力的考查集中体现在立体几何试题上.在新旧教材中立体几何内容有较大的差异,主要是新教材编制了A、B两种版本,在B版教材中增加了空间向量的方法.

新教材中删去了圆柱、圆锥、圆台,只保留了球;而多面体中删去了棱台,保留了棱柱和棱锥,并且删去了体积的大部分内容.由于教材内容的变化,高考对这部分内容的考查也进行了相应的调整,删去的内容不再考查.不过多面体的内容在小学和初中都学习过,也学过相关几何体体积的计算,因此,在高考试题中出现多面体体积的计算应属于正常范围.

在立体几何中引入空间向量以后,很多问.题都可以用向量的方法解决.由于应用空间向量的方法,可以通过建立空间坐标系,将几何元素之间的关系数量化,进而通过计算解决求解、证明的问题,空间向量更显现出解题的优势.

五、解析几何

解析几何是高中数学的又一重要内容,新旧教材相比较变化不是很大,只是删去了极坐标,删减了参数方程,增加了简单线性规划的内容.其核心内容直线和圆以及圆锥曲线基本没有变化,因此高考对解析几何的考查要求也变化不大.不过,由于新教材中增加了平面向量的内容,而平面向量可以用坐标表示,因此,以坐标为桥梁,使向量的有关运算与解析几何的坐标运算产生联系,便可以以向量及其有关运算为工具,来研究解决解析几何中的有关问题,主要是直线的平行、垂直、点的共线、定比分点以及平移等,这样就给高考中解析几何试题的命制开拓了新的思路,为实现在知识网络的交汇处设计试题提供了良好的素材.

解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题是解析几何的基本特点和性质。因此,在解题的过程中计算占了很大的比例,对运算能力有较高的要求,但计算要根据题目中曲线的特点和相互之间的关系进行,所以曲线的定义和性质是解题的基础,而在计算过程中,要根据题目的要求,利用曲线性质将计算简化,或将某一个“因式”作为一个整体处理,这样就可大大简化计算,这其中体现的是“模块”的思想,也就是换元法.

解析几何试题除考查概念与定义、基本元素与基本关系外,还突出考查函数与方程的思想、数形结合的思想、特殊与一般的思想等思想

例如:下面的题就是在传统的解析几何中,加入了向量

六、概率与统计

概率统计在研究对象和方法上与以前学习的确定数学有所不同,是一种处理或然的或随机事件的方法,对过去的必然的因果关系的处理方法是一种完善和补充.

根据中学数学教学大纲的要求,有关概率与统计的内容在新课程中分为必修和选修两部分,其中必修部分包括:随机事件的概率,等可能事件的概率,互斥事件有一个发生的概率,相互独立事件的概率,独立重复试验等.在选修部分分为文科、理科两种要求,选修I为文科的要求,只含统计的内容,包括:抽样方法,总体分布的估计,总体期望值和方差的估计.选修Ⅱ为理科的要求,包括:离散型随机变量的分布列,离散型随机变量的期望值和方差,抽样方法,总体分布的估计,正态分布,线性回归.在高考试卷中,概率和统计的内容每年都有所涉及,以必修概率内容为主,不过随着对新内容的深入考查,理科的解答题也会设计包括离散型随机变量的分布列与期望为主的概率与统计综合试题.

概率与统计的引入拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算等内容都是考查实践能力的良好素材.

由于中学数学中所学习的概率与统计内容是这一数学分支中最基础的内容,考虑到教学实际和学生的生活实际,高考对这部分内容的考查贴近考生生活,注重考查基础知识和基本方法.

第四节 我在高三后期复习中的一些策略

高三后期学生普遍感到什么知识都知道,各种题型也见过,自己做题也基本都会,但就是模拟考试经常考不好,达不到理想的效果,而时间越来越少,高考越来越近,又没有好的方法,摆脱困境,只有拼命练题,练了又忘,忘了再练,加班加点,疲劳之至。

因此,我们做为教师有必要采取一些科学、合理、切实、高效的方法和策略,引导和帮助学生,有效地整合旧知识,熟练基本方法,形成更强的综合运用的能力,以一种积极、健康的心态,高昂的士气去迎接高考的到来。针对这些我想谈一下个人在高三后期复习教学中的一些策略,以供各位教师参考。

要高考了,谁能总结一下高中生物实验方法,比如萨顿类比推理法,紧急

文科数学

一、知识要求

知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列 1 和系列 4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.

各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.

对知识的要求依次是了解、理解、掌握三个层次.

1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.

这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.

2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.

这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用

等.

3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.

这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.

二、能力要求

能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.

1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.

空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.

2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.

抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

3.推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.

中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.

4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.

运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.

5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.

数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.

6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.

7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.

创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.

三、个性品质要求

个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.

要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.

四、考查要求

数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.

1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.

2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.

3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.

对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.

4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.

5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.

数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.

Ⅱ.考试范围与要求

本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系

列 1 的内容;选考内容为《课程标准》的选修系列 4 的“坐标系与参数方程”、“不等式选讲”等 2 个专题.

必考内容

(一) 集合

1.集合的含义与表示

(1)了解集合的含义、元素与集合的属于关系.

(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 2.集合间的基本关系

(1)理解集合之间包含与相等的含义,能识别给定集合的子集.

(2)在具体情境中,了解全集与空集的含义.

3.集合的基本运算

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.

(3)能使用韦恩(Venn)图表达集合的关系及运算.

(二) 函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)

1.函数

(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)

表示函数.

(3)了解简单的分段函数,并能简单应用.

(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.

(5)会运用函数图像理解和研究函数的性质.

2.指数函数

(1)了解指数函数模型的实际背景.

(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.

(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.

(4)知道指数函数是一类重要的函数模型.

江苏高考数学文科范围

类比推理:萨顿果蝇“基因位于染色体上”实验;根据两种物质惊人的相似性,(如基因和染色体,光波和声波)提出假说。

in a word ,类比推理是拿两种物质比较,得出结论,假说演绎法是根据现象,先说,再设计试验来验证。

假说演绎:孟德尔自由组合、分离两大定律的相关验证实验。在观察和分析基础上提出问题以后,通过推理和想象提出解释问题的假 说,根据假说进行演绎推理,再经过试验检验演绎推理的结论。(孟德尔是通过测交进行检验的)

2019年江苏高考文科数学考试大纲已公布,具体内容如下:

一、必考内容

(一)集合

1、集合的含义与表示;2、集合间的基本关系;3、集合的基本运算。

(二)函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)

1、函数;2、指数函数;3、对数函数;4、幂函数;5、函数与方程;6、函数模型及其应用。

(三)立体几何初步

1、空间几何体;2、点、直线、平面之间的位置关系。

(四)平面解析几何初步

1、直线与方程;2、圆与方程;3、空间直角坐标系。

(五)算法初步

1、算法的含义、程序框图;2、基本算法语句。

(六)统计

1、随机抽样;2、用样本估计总体;3、变量的相关性。

(七)概率

1、事件与概率;2、古典概型;3、随机数与几何概型。

(八)基本初等函数Ⅱ(三角函数)

1、任意角的概念、弧度制;2、三角函数。

(九)平面向量

1、平面向量的实际背景及基本概念;2、向量的线性运算;3、平面向量的基本定理及坐标表示;4、平面向量的数量积;5、向量的应用。

(十)三角恒等变换

1、和与差的三角函数公式;2、简单的三角恒等变换。

(十一)解三角形

1、正弦定理和余弦定理;2、应用。

(十二)数列

1、数列的概念和简单表示法;2、等差数列、等比数列。

(十三)不等式

1、不等关系;2、一元二次不等式;3、二元一次不等式组与简单线性规划问题;4、基本不等式。

(十四)常用逻辑用语

1、命题及其关系;2、简单的逻辑联结词;3、全称量词与存在量词。

(十五)圆锥曲线与方程

(十六)导数及其应用

1、导数概念及其几何意义;2、导数的运算;3、导数在研究函数中的应用;4、生活中的优化问题。

(十七)统计案例

1、独立性检验;2、回归分析。

(十八)推理与证明

1、合情推理与演绎推理;2、直接证明与间接证明。

(十九)数系的扩充与复数的引入

1、复数的概念;2、复数的四则运算。

(二十)框图

1、流程图;2、结构图。

二、选考内容

(一)坐标系与参数方程

1、坐标系;2、参数方程。

(二)不等式选讲

1、理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明不等式;

2、了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明;

3、会用参数配方法讨论柯西不等式的一般情形;

4、会用向量递归方法讨论排序不等式;

5、了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题;

6、会用数学归纳法证明伯努利不等式;

7、会用上述不等式证明一些简单问题、能够利用平均值不等式、柯西不等式求一些特定函数的极值;

8、了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法。

普通高等学校招生全国统一考试大纲是高考命题的规范性文件和标准。根据高考内容改革要求修订考试大纲,是保证考试科学公平、促进素质教育发展的一项重要工作。现将2019年江苏普通高等学校招生全国统一考试文科数学大纲予以公布。

文章标签: # 函数 # 考查 # 了解